Permutable Entire Functions Satisfying Algebraic Differential Equations

نویسنده

  • WALTER BERGWEILER
چکیده

We show that if f and g are transcendental entire functions such that f(g) = g(f), then f satisfies an algebraic differential equation if and only if g does.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Derivatives of Differential-Algebraic Equations

Nonsmooth equation-solving and optimization algorithms which require local sensitivity information are extended to systems with nonsmooth parametric differential-algebraic equations embedded. Nonsmooth differential-algebraic equations refers here to semi-explicit differential-algebraic equations with algebraic equations satisfying local Lipschitz continuity and differential right-hand side func...

متن کامل

Spaces of Functions Satisfying Simple Differential Equations

In [6]–[9] the first author published an algorithm for the conversion of analytic functions for which derivative rules are given into their representing power series ∞ ∑ k=0 akz k at the origin and vice versa, implementations of which exist in Mathematica [19], (s. [9]), Maple [12] (s. [4]) and Reduce [5] (s. [13]). One main part of this procedure is an algorithm to derive a homogeneous linear ...

متن کامل

An efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order

In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

Study on multi-order fractional differential equations via operational matrix of hybrid basis functions

In this paper we apply hybrid functions of general block-pulse‎ ‎functions and Legendre polynomials for solving linear and‎ ‎nonlinear multi-order fractional differential equations (FDEs)‎. ‎Our approach is based on incorporating operational matrices of‎ ‎FDEs with hybrid functions that reduces the FDEs problems to‎ ‎the solution of algebraic systems‎. ‎Error estimate that verifies a‎ ‎converge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005